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ABSTRACT

Designing a suitable image representation is one of the most fundamental issues of computer vision. There are
three steps in the popular Bag of Words based image representation: feature extraction, coding and pooling. In
the final step, current methods make an M × K encoded feature matrix degraded to a K-dimensional vector
(histogram), where M is the number of features, and K is the size of the codebook: information is lost dramat-
ically here. In this paper, a novel pooling method, based on 2-D histogram representation, is proposed to retain
more information from the encoded image features. This pooling method can be easily incorporated into state-
of-the-art computer vision system frameworks. Experiments show that our approach improves current pooling
methods, and can achieve satisfactory performance of image classification and image reranking even when using
a small codebook and costless linear SVM.
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1. INTRODUCTION

Designing efficient image representation is one of the most fundamental issues of computer vision. One popular
framework of image representing is called Bag of Words, which represents images as an orderless collection of
several kinds of features. This method is first introduced as an analogy of Bag of Words model in text retrieval.1

There are three steps in Bag of Words based image representation. The first one is feature extraction:
extracting local or global descriptors from grey level images. The descriptors are selected at interest point
locations, or in a dense sampling manner. Local features such as SIFT2 and HOG3 are widely used in state-of-
the-art computer vision systems. After this step, each image is represented by a set of raw feature descriptors:

X = [x1, ...,xM ]T ∈ RM×D , (1)

where M is the number of feature descriptors, and D is the dimension of the feature descriptor.

Although raw feature descriptor contains the most information from the image, it is too large for efficient
processing; also its discrimination ability is not satisfactory. The second step, which is called coding, transforms
raw image features into more efficient representations. In a popular approach, feature descriptors are first
clustered to build feature codebook (dictionary):

V = [v1, ...,vK ]T ∈ RK×D, (2)

where v1, ...,vK are the codewords. Then each descriptor is quantized into one or several codewords to form
matrixA ∈ RM×K , in which αi,j is the ”belongingness” of the i-th descriptor to the j-th codeword. In traditional
Bag of Words method,1 hard quantization is used, i.e.

αi,j =

{
1, if j = argmin

k

||xi − vk||
2
2

0, otherwise
, (3)
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where V = [v1, ...,vK ]T is the set of cluster centers. Each row of A has only one non-zero value 1. An example
of A in traditional Bag of Words model is:

A1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 0 0 0
0 0 0 1
1 0 0 0
0 0 1 0
0 0 1 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4)

Here five descriptors are quantized into four cluster centers. A more general approach is soft quantization,4

which uses a linear combination of multiple visual words to approximate the raw descriptors.

αi,j =
exp(−β ‖xi − vj‖

2

2
)

K∑
k=1

exp(−β ‖xi − vk‖
2

2)

, (5)

where β is the soft assignments factor. Another method is sparse coding,5 in which A ∈ RM×K is defined by
the following minimization problem:

min
A,V

M∑
i=1

||xi −αiV ||
2 + λ|αi|, s.t. ||vk|| ≤ 1, ∀k = 1, 2, ...,K, (6)

where λ is the sparse regularization, ensuring most values of A to be zeros. An example of A in sparse coding
is:

A2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.3 −0.1 0.2 0
0 −0.2 0 0.5
0.4 0 0.3 0
0 0 0.1 0.5
0.5 0.4 0 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7)

Here five descriptors are represented as sparse linear combinations of four codewords.

The third step is pooling: summarizing the encoded features across each image to form the final image
representation. The objective of pooling is to achieve invariance to image transformation, more compact repre-
sentation, and better robustness to noise and clutter.6 Current pooling methods make A ∈ RM×K degraded to
a K-dimensional vector (histogram) H ∈ RK . Two general configurations of pooling are average pooling and
max pooling. In average pooling, H ∈ RK is the sum (or mean) values of columns of A ∈ RM×K ; in max
pooling, H ∈ RK is the max value of columns of A ∈ RM×K . Figure 1 and Figure 2 are example Hs by average
pooling and max pooling for A1 in equation 4, respectively. And Figure 3 and Figure 4 are example Hs by
average pooling and max pooling for A2 in equation 7, respectively. From the general pooling process above, we
can know that information is lost dramatically here.∗

The motivation of our work is to design methods which can retain more information in pooling, and thus
improve the performance of computer vision systems. The intuition is that other than pooling A ∈ RM×K

into a K-dimensional vector H ∈ RK , we can do a trade off between the efficiency and performance: to design
methods to pool A ∈ RM×K into a larger vector in order to retain more information. In this paper, a novel
pooling method, 2-D histogram representation based pooling, is proposed to achieve the goal. 2-D histogram
representation can be used to pool image features encoded by all kinds of image coding techniques such as
hard quantization, soft quantization and sparse coding, and it can be easily incorporated into state-of-the-art
computer vision system frameworks. Experiments show that our approach can improve current pooling methods,
and can achieve satisfactory performance of image classification and image reranking even when using a small
codebook and costless linear SVM.

∗When hard quantization (traditional Bag of Words model) and average pooling is used, information is not lost in
the pooling step, because A ∈ R

M×K can be fully reconstructed by H ∈ R
K when the order of the encoded features is

not important. However, hard quantization is a highly information-lost process. Section 2 will show that after a slight
modification, our later proposed method is also applicable to hard quantization.
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Figure 1. H by average pooling of A1 (traditional Bag of
Words model). The distribution of descriptors is described
as a 1-D histogram.

Figure 2. H by max pooling of A1 (traditional Bag of
Words model). In contrast to average pooling, the acquired
H is a binary ”histogram”.

Figure 3. H by average pooling of A2 (sparse coding). H
is the sum values of columns of A2.

Figure 4. H by max pooling of A2 (sparse coding). H is
the max values of columns of A2.

The rest of the paper is organized as follows. In section 2, related works are reviewed. The 2-D histogram
representation algorithm and its analysis are presented in Section 3. Experiment results are evaluated in Section
4. Some discussions are provided in Section 5. Concluding remarks and future research direction are provided
in Section 6.

2. RELATED WORKS

Besides the effort of designing feature descriptors and coding methods, pooling is relatively less studied. Several
approaches have shown that a change in the strategy of pooling can lead to much better performance. Yang et
al.5 has shown that under sparse coding, max pooling demonstrates superior performance than average pooling.
Y. Boureau et al.7 has studied the performance of max pooling and average pooling under various experiment
setups, and has provided a simple analysis of max and average pooling. In a more recent work of them,6 detailed
theoretical analysis of max pooling and average pooling are provided by modeling binary features as Bernoulli
distribution and sparse codes as Exponential distribution. Although all the above works show that pooling
can be very important in image representation, none of them try to design methods to get better pooling by
extending the pooling vector H .

The ultimate goal of improving pooling method is to get efficient and discriminative representation of images,
and thus improve the discrimination of different classes of images. In other words, given some images, and each
of them has been represented by sets of encoded features, we want to get better measurement of the similarity
between the images. From this perspective, one research direction is to design better kernels between sets of
features. Work in this category include but not limited to kernels on attributed pointsets,8 which extends sum
matching kernel9 by spatial information; pyramid matching kernel10 which matches sets of image features by
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multi-resolution histograms (it can be described as a multi-resolution average pooling), Bhattacharyya kernel11

and Fisher kernel,12–16 which analysis the similarity by a estimated probability distribution of the features.
Beyond Bag of Words model, these works have provided another view in image representation.†

Some related methods which fall into the category of Bag of Words model are EMK (efficient matching
kernel),17 MiniBOF,18 spatial pyramid matching,19 and spatial quadratic codebook.20, 21 In the first approach,17

local features are first mapped to a low-dimensional space, and then average pooled across images. In the second
approach,18 the author builds a set of sparse projections of max-pooled Bag of Words vector in order to achieve
index efficiency. Different from these two works, our method is to extend, not to compress, the feature vector,
and 2-D histogram is used to address the problem directly in pooling step, not before or after pooling. In the
third approach,19 encoded image features are pooled on different spatial grads to incorporate spatial information
in the final image representation. In the fourth and fifth approaches,20, 21 image features which are represented
by Bag of Words model are paired based on spatial information, yielding higher-order features. Thus, a quadratic
codebook, i.e. a 2-D histogram in spatial domain, can be used to describe the feature pairs. While also trying to
retain more information in pooling, the information source in the proposed 2-D histogram is from the feature itself
other than spatial positions of the feature. Therefore, 2-D histogram pooling can be considered as orthogonal to
the last three approaches.

Our work is related to a recent work called super vector,22 which also tries to design better pooling method
by retaining more information from the encoded features. Different from their approach which is probability
based, our work is a simple extension of histogram in traditional Bag of Word model which can achieve both
efficiency and the simple elegance of Bag of Words model.

3. 2-D HISTOGRAM REPRESENTATION FOR POOLING

In this section, a general framework of 2-D histogram representation for pooling is stated and analyzed. Then de-
tailed algorithms extended from traditional Bag of Words model and sparse coding are provided. The algorithms
can be easily modified to fit other coding techniques.

3.1 Framework of 2-D Histogram Representation in Pooling

In contrast to current pooling methods, which make A ∈ RM×K degraded to a K-dimensional vector H ∈ RK ,
2-D representation pools the encoded features into matrix H̃ ∈ RK×K . A general framework of 2-D histogram
representation can be described in Algorithm 1.

According to the algorithm, H̃ is a weighted distribution of A according to two specific dimensions. That is
why we call our approach 2-D histogram representation. f1 and f2 are functions to choose the specific dimensions
of αi, i = 1, 2...,M . A simple example for selecting f1 and f2 is to choose the first and second largest numbers
in αi, respectively. g determines the value added to the specific bins of the 2-D histogram. If average pooling
is used, g(αi,x, αi,y) will be added one by one; if max pooling is used, only the largest g(αi,x, αi,y) will be used.
An example of g is the mean function: g(αi,x, αi,y) = (αi,x + αi,y)/2.

In general, computing f1 and f2 pays a computational complexity O(K). The overall complexity of pooling
in Algorithm 1 is O(M ×K), which is the same with 1-D histogram pooling. The problem is that 2-D histogram
is not space efficient: the additional dimension will increase the space complexity from O(K) to O(K2) under
the same coding configuration. The increased space complexity would make the post processes time consuming.
However, in Section 3, experiments show that this scheme can be utilized in small codebooks without much
sacrifice of the performance.

Specific algorithms will be stated in the following two subsections with the configurations of Bag of Words
model and sparse coding.

†A review of image representation method other than Bag of Words model is beyond the topic of this article.
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Algorithm 1 : Framework of 2-D Histogram Representation for Pooling

for each image do

extracting image features x1,x2, ...xM

coding to get A ∈ RM×K

initialize H̃ = zeros(K,K)
for i = 1 to M do

find αi,x and αi,y , s.t. αi,x = f1(αi) and αi,y = f2(αi)
if using average pooling then

H̃x,y = H̃x,y + g(αi,x, αi,y)
else

H̃x,y = max(H̃x,y, g(αi,x, αi,y))
end if

end for

end for

3.2 Algorithm for Bag of Words Model

In the coding step of traditional Bag of Words model, each descriptor is assigned as a single cluster center. In
order to obtain 2-D information from the encoded features, the coding step is slightly modified as shown in
Algorithm 2. Each descriptor is assigned as a combination of two codewords. Simpler than soft quantization,
there is no weights in the assignments, and a descriptor is assigned as only two codewords instead of all of them.
Equation 8 shows an example of modified encoded feature matrix:

Ã1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 0 −1 0
0 0 −1 1
1 0 −1 0
0 −1 1 0
−1 0 1 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (8)

Algorithm 2 Modified Coding Step in Bag of Words Model

for each image do

extract image features x1,x2, ...xM

initialize A =zeros (M,K)
for i = 1 to M do

find the closest cluster center vj1 to xi

αi,j1 = 1
find the second closest cluster center vj2 to xi

αi,j2 = −1
end for

end for

Algorithm 3 is 2-D representation in pooling for Bag of Words model. We simply design function g as a
constant value 1. Figure 5 and Figure 6 are the acquired H̃s of Ã1 according to Algorithm 3 with average
pooling and max pooling, respectively. Compared to Figure 1 and Figure 2, 2-D histogram contains much more
information, and the pooling results in traditional Bag-of-Words model can be fully reconstructed from 2-D
histogram representation.

3.3 Algorithm for Sparse Coding

Algorithm 4 is a simple 2-D histogram pooling process for sparse coding. Because A from sparse coding is not
a non-negative matrix, it is simply modified as its absolute value:A = abs(A). Equation 9 shows an example of
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Algorithm 3 : Algorithm for Bag of Words Model

for each image do

code according to modified Bag of Word method to get A ∈ RM×K

initialize H̃ = zeros(K,K)
for i = 1 to M do

find αi,x and αi,y , s.t. αi,x = 1 and αi,y = −1
if using average pooling then

H̃x,y = H̃x,y + 1
else

H̃x,y = 1
end if

end for

end for

Figure 5. H̃ by average pooling of Ã1 (Bag of Words) Figure 6. H̃ by max pooling of Ã1 (Bag of Words)

absolute value of encoded feature matrix:

Ã2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.3 0.1 0.2 0
0 0.2 0 0.5
0.4 0 0.3 0
0 0 0.1 0.5
0.5 0.4 0 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (9)

Figure 7 and Figure 8 are H̃s of Ã2 according to Algorithm 4 with average pooling and max pooling,
respectively. Compared to Figure 3 and Figure 4, 2-D histogram contains much more information.

4. EXPERIMENTS

In this section, our proposed method is tested in two applications, image classification and image reranking.
For both classification and reranking, 15 scene categories23 and Caltech10124 are used as the test benchmarks.
Results from 1-D histogram and 2-D histogram with a small codebook size (16 or 8) are evaluated. And results
from 1-D histogram with a large codebook size (256 or 64) are provided for reference.

4.1 Image Classification

As spatial pyramid19 is a successful method that has been widely used in scene and object classification, a 3-level
spatial pyramid is used. For 15 scene categories dataset, 100 images in each class are used for training and the
rest for testing. For Caltech101 dataset, 30 images in each class are used for training and the rest (with the limit
of 50) for testing. SVM based on 1-vs-all rule is used. In sparse coding, no matter whether the method we use
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Algorithm 4 : Algorithm for Sparse Coding

for each image do

extract image features x1,x2, ...xM

do sparse coding to get A ∈ RM×K

A = abs(A)
initialize H̃ =zeros(K,K)
for i = 1 to M do

find the largest value of αi: αi,x

find the second largest value of αi: αi,y

if using average pooling then

H̃x,y = H̃x,y + (αi,x + αi,y)/2
else

H̃x,y = max(H̃x,y, (αi,x + αi,y)/2)
end if

end for

end for

Figure 7. H̃ by average pooling of Ã2 (sparse coding) Figure 8. H̃ by max pooling of Ã2 (sparse coding)

is 1-D histogram or 2-D histogram, A is modified as its absolute value. The result is the mean recognition rate
for all the classes. For other experimental settings, we follow the work of S. Lazebnik et al.19 and J. Yang et al.5

Each experiment is performed 5 times with randomly selected training and testing images in order to get reliable
results. The reported recognition rate is presented by the mean and standard deviation of the experiments.

Table 1 and Table 2 are the experiments results of 15 scene categories and Caltech101 datasets, respectively.
We have tested our method in various experiment settings, i.e. average/max pooling, histogram intersection
kernel (HIK)/linear kernel. From Table 1 and Table 2, with a codebook size of 16, the proposed 2-D histogram
representation for pooling can improve the recognition rate by 4% to 19% for 15 scene categories dataset, and
5% to 20% for Caltech101 dateset. For some experiments settings (e.g. hard quantization, linear kernel,average
pooling), the recognition rate of 2-D histogram with a small codebook size (16) is already comparable or even
better than the recognition rate of 1-D histogram with a large codebook size (256). When using a linear kernel, the
performance of 2-D histogram representation does not degrade much compared to HIK kernel. The reason behind
this is that 2-D pooling, which leads to sparser representation of images, can improve the linear discrimination
of the features. This property of 2-D histogram pooling is of great value, since it enable us to use costless linear
SVM25 to do the classification job, and further make the method potential to be utilized in large-scale data.

4.2 Image Reranking

In an image retrieval system, the input of a certain query will yield millions of images. The problem of how to
rank the most relevant images on the top is called image reranking. Image reranking has received an increasing
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Table 1. Classification Accuracy of 15 Scene Categories

Method 1-D histogram
CodebookSize=16

2-D histogram
CodebookSize=16

1-D histogram
CodebookSize=256

hard quantization, linear kernel, average pooling 66.0±0.8 71.7±0.4 73.3±1.1
hard quantization, linear kernel, max pooling 54.9±1.0 71.6±1.0 78.5±1.6
hard quantization, HIK kernel, average pooling 72.9±0.6 78.8±1.1 81.5±0.5
hard quantization, HIK kernel, max pooling 53.2±0.4 72.1±0.9 78.3±1.0
sparse coding, linear kernel, average pooling 69.1±0.9 73.4±1.5 77.5±0.3
sparse coding, linear kernel, max pooling 66.7±3.4 75.5±2.8 80.9±1.5
sparse coding, HIK kernel, average pooling 71.3±1.4 77.6±1.1 81.6±1.5
sparse coding, HIK kernel, max pooling 68.1±2.2 77.1±1.9 82.0±0.8

Table 2. Classification Accuracy of Caltech101

Method 1-D histogram
CodebookSize=16

2-D histogram
CodebookSize=16

1-D histogram
CodebookSize=256

hard quantization, linear kernel, average pooling 43.8±1.5 49.0±1.7 47.9±1.3
hard quantization, linear kernel, max pooling 35.5±0.9 56.2±1.9 64.7±1.3
hard quantization, HIK kernel, average pooling 54.5±1.2 59.9±1.6 65.3±2.3
hard quantization, HIK kernel, max pooling 35.7±2.1 56.7±2.2 65.1±1.1
sparse coding, linear kernel, average pooling 48.2±1.1 53.0±1.2 62.2±1.3
sparse coding, linear kernel, max pooling 49.3±2.1 58.1±0.7 69.1±2.2
sparse coding, HIK kernel, average pooling 52.5±1.4 60.0±2.0 69.3±1.0
sparse coding, HIK kernel, max pooling 53.0±2.4 60.1±1.7 71.3±1.3

attentions from scholars these years.26, 27 In this section, we apply our 2-D histogram representation for pooling
with Bag of Words model under the framework of random walk based image reranking.27

In random-walk based reranking, for M images, a similarity matrix of images, S ∈ RM×M , is first built,
where si,j is the similarity value of the i-th image to the j-th image. Then the rank of images is defined as:

Rank = dS ×Rank + (1− d)p, p =

[
1

M

]
M×1

, (10)

where d is the damping factor. As reported in the reference,27 d > 0.8 is often chosen, and the setting of d have
relatively minor impact on the results. In this experiment, d is set to be 0.8.

For the experiments, images are first transformed to 1-D or 2-D histogram by Bag of Words model and
average pooling, with a spatial pyramid level of 3. Then similarity matrix is build by computing the HIK kernel
of the histograms. Finally, random walk based reranking algorithm is used to get the rank of the images.

The test datasets are build based on 15 scene categories and Caltech101 datasets. For 15 scene categories
dataset, we first randomly select 40 images from each categories. Then for each categories, we add 20 noise images
which are randomly selected from other categories. For Caltech101 dataset, the original number of images and
the number of added noise images are 30 and 15, respectively. Images in each categories are reranked using the
method described above. The final result is the average precision-recall curve of all the classes.

The codebook size is set to be 8. Results of 1-D histogram with codebook size 64 are also provided for
reference. The experiments are repeated 5 times with different randomly selected images to get reliable results.
Figure 9 and Figure 10 are the mean precision-recall curves for all the categories of 15 scene categories dateset and
Caltech101 dataset, respectively. From the results, with a small codebook size (8), the results of 2-D histogram
pooling are better than 1-D histogram pooling.

5. DISCUSSIONS

From the experiments above, by applying 2-D histogram representation of images for pooling, the performance
of image classification and image reranking can be improved especially when using a small codebook. The reason
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Figure 9. Reranking precision-recall curve for 15 scene cat-
egories dataset
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Figure 10. Reranking precision-recall curve for Caltech101
dataset

behind the improvement is that 2-D histogram, with the additional dimension, can extract more information
from the encoded features A ∈ RM×K . Also, this sparser representation will lead to better linear discrimination
of the features.

As mentioned in Section 3, 2-D histogram representation based pooling is not a space efficient method: it
will transform an image to H̃ ∈ RK×K which has the same size with a 1-D representation H ∈ RK2

. Also, in
most of the time, the performance of the proposed method is not comparable to 1-D representation with a large
codebook size. So what are the advantages of 2-D histogram based pooling? Firstly, it can be used to improve
the performance when using small codebook. Small codebook is easy to be built, and can greatly save the time
in coding step. Secondly, experiments show that 2-D histogram representation H̃ ∈ RK×K is a highly sparse
matrix, which means we can speed up the processing of 2-D histogram representation by designing methods to
compress the matrix. Here, the approaches in quadratic spatial codebook20, 21 are of reference value.

To further improve the performance, 2-D histogram can be extended to high-dimensional histogram. For
example, the largest, second largest and third largest values of αi can be extracted to build 3-D histogram.
However, preliminary experiment shows that adding more dimension, which will obviously add more space
complexity, cannot improve the performance coherently.

When using 2-D histogram representation, although more information from the encoded image features
A ∈ RM×K is extracted, only two values in each row of A ∈ RM×K are utilized. A natural idea is to make the
two values represent more information. For example, we can modify sparse coding into the following problem:

min
A,V

M∑
i=1

||xi −αiV ||
2, s.t. ∃! {xi, yi}(xi �= yi), αi,xi

�= 0, αi,yi
�= 0. (11)

By replacing the sparse regulation factor λ|αi| in Equation 6 by a more strict condition, the two non-zero values
in every αi, i = 1, 2, ...,M can be used to describe the descriptor better.

When sparse coding is used, A ∈ RM×K has negative values. The absolute value ofA used in pooling contains
less information. To retain more information, one idea is to use NMF (non-negative matrix factorization) instead
of sparse coding. Similar to sparse coding, in NMF, A ∈ RM×K is defined by the following minimize problem:

min
A,V

M∑
i=1

||xi −αiV ||, s.t. αi,j ≥ 0, ∀i = 1, 2, ...,M, j = 1, 2, ...,K. (12)
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Another solution is to utilize the negative values of A in the pooling step. For example, we can design f1 and
f2 in Algorithm 1 to be the largest positive value and the smallest negative value of ai, respectively. However,
preliminary experiments show it cannot improve the result.

6. CONCLUSION AND FUTURE WORK

In this paper, a novel pooling method, based on 2-D histogram representation, is proposed to retain more
information from the encoded image features. 2-D histogram representation can be easily incorporated into
state-of-the-art computer vision system frameworks. Experiments show that our approach improves current
pooling methods, and can achieve satisfactory performance of image classification and image reranking even
when using a small codebook and costless linear SVM.

The next step of our efforts is to design 2-D histogram pooling with more variations, and to test the method
under more coding configurations. We will also do a theoretical evaluation of 2-D histogram representation to
further understand it. Another direction is to research into compressing the sparse 2-D histogram matrix to
make it space efficient, and applicable to large codebooks.
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