$\propto\!\mathrm{SVM}$ for Learning with Label Proportions

Felix X. Yu[†] Dong Liu[†] Sanjiv Kumar[§] Tony Jebara[†] Shih-Fu Chang[†]

[†]Columbia University, New York, NY 10027 [§]Google Research, New York, NY 10011

COLUMBIA ENGINEERING GOC The Fu Foundation School of Engineering and Applied Science

Outline

Learning Setting and Applications

- Related Works
- Formulation
- Algorithms
- Experiments

Applications

- Healthcare
 - Medical record
- Social science
 - Voting behavior
 - Census data
 - Energy consumption
 - Marketing
- Computer vision

 Facial attributes ("90 percent of Asians have black hair")

Applications

- Healthcare
 - Medical record
- Social science
 - Voting behavior
 - Census data
 - Energy consumption
 - Marketing
- Computer vision

COLUMBIA ENGINEERING

 Facial attributes ("90 percent of Asians have black hair")

Privacy issues

Applications

Healthcare

- Medical record
- Social science
 - Voting behavior
 - Census data
 - Energy consumption
 - Marketing
- Computer vision
 - Facial attributes ("90 percent

of Asians have black hair")

Easier to get label proportions

Outline

- Learning Setting and Applications
- Related Works
- Formulation
- Algorithms
- Experiments

Related Works

- Related learning settings: semi-supervised learning, clustering, multi-instance learning etc.
- Learning with label proportions: former works rely heavily on the "mean of each bag"
 - MeanMap (Quadranto et al., 2009)
 - exponential model
 - class-conditional distribution of data is independent of the bag
 - Inverse Calibration (Rueping, 2011)
 - large-margin regression
 - mean of each bag has a soft label corresponding to its label proportion

Contributions

- Introduce \propto SVM which explicitly models the unknown instance labels.
- Alleviates the need for making restrictive assumptions on the data.
- Two optimization algorithms based on alternating minimization and convex relaxation.
- Outperforms existing methods under various settings/datasets.

Outline

- Learning Setting and Applications
- Related Works
- Formulation
- Algorithms
- Experiments

Formulation (Learning Setting)

• The training set $\{\mathbf{x}_i\}_{i=1}^N$ is given in the form of K non-overlapping bags:

$$\{\mathbf{x}_i | i \in \mathcal{B}_k\}_{k=1}^K, \quad \cup_{k=1}^K \mathcal{B}_k = \{1 \cdots N\}.$$

• The k-th bag is with label proportion p_k :

$$\forall_{k=1}^{K}, \quad p_k := \frac{|\{i|i \in \mathcal{B}_k, y_i^* = 1\}|}{|\mathcal{B}_k|}.$$

 $y_i^* \in \{1, -1\}$: the unknown ground-truth label of $\mathbf{x}_i, \forall_{i=1}^N$

Formulation

• Prediction model:

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \varphi(\mathbf{x}) + b).$$

• Explicitly model the unknown instance labels as

$$\mathbf{y} = (y_1, \cdots, y_N)^T$$
. $y_i \in \{1, -1\}, \forall_{i=1}^N$.

• The label proportion of the *k*-th bag can be modeled as

$$\tilde{p}_k(\mathbf{y}) = \frac{|\{i|i \in \mathcal{B}_k, y_i = 1\}|}{|\mathcal{B}_k|} = \frac{\sum_{i \in \mathcal{B}_k} y_i}{2|\mathcal{B}_k|} + \frac{1}{2}.$$

\propto SVM Formulation

• Large-margin framework:

$$\min_{\mathbf{y},\mathbf{w},b} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N L(y_i, \mathbf{w}^T \varphi(\mathbf{x}_i) + b) + C_p \sum_{k=1}^K L_p \left(\tilde{p}_k(\mathbf{y}), p_k \right)$$

s.t. $\forall_{i=1}^N, \quad y_i \in \{-1, 1\}.$

\propto SVM Formulation

• Large-margin framework:

$$\min_{\mathbf{y},\mathbf{w},b} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N L(y_i, \mathbf{w}^T \varphi(\mathbf{x}_i) + b) + C_p \sum_{k=1}^K L_p \left(\tilde{p}_k(\mathbf{y}), p_k \right)$$

s.t. $\forall_{i=1}^N, \quad y_i \in \{-1, 1\}.$

- Generalizes the classic SVM.
- Naturally spans supervised/semi-supervised learning and clustering.

\propto SVM Formulation

• Large-margin framework:

$$\min_{\mathbf{y},\mathbf{w},b} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N L(y_i, \mathbf{w}^T \varphi(\mathbf{x}_i) + b) + C_p \sum_{k=1}^K L_p \left(\tilde{p}_k(\mathbf{y}), p_k \right)$$

s.t. $\forall_{i=1}^N, \quad y_i \in \{-1, 1\}.$

- Generalizes the classic SVM.
- Naturally spans supervised/semi-supervised learning and clustering.

However:

• A non-convex integer programming problem.

Outline

- Learning Setting and Applications
- Related Works
- Formulation
- Algorithms
- Experiments

The alter-∝SVM Algorithm

- For a fixed \mathbf{y} , the optimization $w.r.t \mathbf{w}$ and b is an SVM problem.
- When **w** and *b* are fixed:

$$\min_{\mathbf{y}} \sum_{i=1}^{N} L(y_i, \mathbf{w}^T \varphi(\mathbf{x}_i) + b) + \frac{C_p}{C} \sum_{k=1}^{K} L_p\left(\tilde{p}_k(\mathbf{y}), p_k\right)$$

s.t. $\forall_{i=1}^{N}, \quad y_i \in \{1, -1\}.$

The alter-∝SVM Algorithm

$$\min_{\mathbf{y}} \sum_{i=1}^{N} L(y_i, \mathbf{w}^T \varphi(\mathbf{x}_i) + b) + \frac{C_p}{C} \sum_{k=1}^{K} L_p\left(\tilde{p}_k(\mathbf{y}), p_k\right)$$

s.t. $\forall_{i=1}^{N}, y_i \in \{1, -1\}.$

- Consider each bag separately.
- For the k-th bag: sorting, $\mathcal{O}(|\mathcal{B}_k| \log |\mathcal{B}_k|)$ time).

Proposition:

The above can be solved in $\mathcal{O}(N \log(J))$ time, $J = \max_{k=1\cdots K} |\mathcal{B}_k|$.

The alter- \propto SVM Algorithm

To alleviate the problem of local solutions:

- Multiple initilizations.
- An additional annealing loop to gradually increase C.

The conv- \propto SVM Algorithm

- Does not require multiple initializations.
- Motivated by large-margin clustering (Xu et al., 2004) (Li et al., 2009).

The conv-∝SVM Algorithm

• Reformulation:

$$\min_{\mathbf{y}\in\mathcal{Y},\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^N L(y_i, \mathbf{w}^T\varphi(\mathbf{x}_i))$$
$$\mathcal{Y} = \left\{\mathbf{y} | |\tilde{p}_k(\mathbf{y}) - p_k| \le \epsilon, y_i \in \{-1, 1\}, \forall_{k=1}^K \right\}$$

• Write the inner problem as its dual (with hinge loss):

$$egin{aligned} &\min \max_{\mathbf{y} \in \mathcal{Y}} -rac{1}{2} oldsymbol{lpha}^T \left(oldsymbol{\mathcal{K}} \odot \mathbf{y} \mathbf{y}^T
ight) oldsymbol{lpha} + oldsymbol{lpha}^T \mathbf{1} \ &oldsymbol{lpha} \in \mathbb{R}^N \ &\mathcal{A} = \{ oldsymbol{lpha} | 0 \leq oldsymbol{lpha} \leq C \} \end{aligned}$$

The conv-∝SVM Algorithm

$$\min_{\mathbf{y}\in\mathcal{Y}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}-\frac{1}{2}\boldsymbol{\alpha}^{T}\left(\boldsymbol{\mathcal{K}}\odot\mathbf{y}\mathbf{y}^{T}\right)\boldsymbol{\alpha}+\boldsymbol{\alpha}^{T}\mathbf{1}$$

$$oldsymbol{lpha} \in \mathbb{R}^N$$

 $\mathcal{A} = \{ oldsymbol{lpha} | 0 \leq oldsymbol{lpha} \leq C \}$

- Convex in $M := yy^T$.
- Relax the feasible space of M to get a convex problem.

 $\mathcal{M}_{0} = \{\mathbf{y}\mathbf{y}^{T} | \mathbf{y} \in \mathcal{Y}\}$ **k** Relaxation $\mathcal{M} = \left\{ \sum_{\mathbf{y} \in \mathcal{Y}} \mu_{(\mathbf{y})} \mathbf{y}\mathbf{y}^{T} \middle| \mathbf{\mu} \in \mathcal{U} \right\},$ $\mathcal{U} = \left\{ \mathbf{\mu} \middle| \sum_{\mathbf{y} \in \mathcal{Y}} \mu_{(\mathbf{y})} = 1, \mu_{(\mathbf{y})} \ge 0 \right\}$

The conv- \propto SVM Algorithm

• Solving the relaxed M is identical to finding μ :

$$\min_{\boldsymbol{\mu}\in\mathcal{U}}\max_{\boldsymbol{\alpha}\in\mathcal{A}}-\frac{1}{2}\boldsymbol{\alpha}^T\left(\sum_{\mathbf{y}\in\mathcal{Y}}\mu_{(\mathbf{y})}\boldsymbol{\mathcal{K}}\odot\mathbf{y}\mathbf{y}^T\right)\boldsymbol{\alpha}+\boldsymbol{\alpha}^T\mathbf{1}.$$

- Multiple Kernel Learning (MKL).
- $|\mathcal{Y}|$ is very large. Not tractable to solve directly.
- Primal variables \rightarrow dual constraints.
- Cutting plane method (Li et al., 2009) (Joachims et al., 2009).

Outline

- Learning Setting and Applications
- Related Works
- Formulation
- Algorithms
- Experiments

Experiments

• Performance of different techniques on 12 datasets from the UCI/LibSVM repository.

Dataset	Size	Attributes	Classes
heart	270	13	2
heart-c	303	13	2
colic	366	22	2
vote	435	16	2
breast-cancer	683	10	2
australian	690	14	2
credit-a	690	15	2
breast-w	699	9	2
ala	$1,\!605$	119	2
dna	2,000	180	3
satimage	$4,\!435$	36	6
cod-rna.t	$271,\!617$	8	2

- Follow the experimental setting of (Rueping, 2011):
 - Random bag generation (with different bag sizes). Performance of 5fold cross validation.
 - Linear and RBF kernels.

E	Experiments												
Dataset	Method	2	4	8	16 32 64	NF.							
heart	InvCal alter-xSVM conv-xSVM	83.15±0.56 83.15±0.85 82.96±0.26	81.06±0.70 82.89±1.30 82.20±0.52	80.26 ± 1.32 7 81.51±0.54 8 81.38±0.53 81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 85 37							
colic	MeanMap InvCal alter-xSVM	82.45±0.88 82.20±0.61 83.28±0.50	81.38±1.26 81.20±0.87 82.97±0.39	81.71±1.16 81.17±1.74 82.03±0.44 81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 80 34							
vote	MeanMap InvCal alter-xSVM	82.74±1.15 91.15±0.33 95.68±0.19 95.80±0.20	81.83±0.46 90.52±0.62 94.77±0.44 95.54±0.25	79.58±0.57 73 91.54±0.20 90 93.95±0.43 93 94.88±0.94 93		76 33 74 30							
australian dna-1	MeanMap InvCal alter-∝SVM conv-∝SVM MeanMap InvCal alter-∝SVM conv-∝SVM	82.97±0.72 86.06±0.30 85.74±0.22 85.97±0.53 91.53±0.25 89.32±3.39 95.67±0.40 93.36±0.53	$\begin{array}{c} 9201\pm0.69\\ 85,88\pm0.34\\ 86,11\pm0.26\\ 85,71\pm0.21\\ 86,46\pm0.23\\ 90.58\pm0.34\\ 92.73\pm0.53\\ 94,65\pm0.52\\ 86,75\pm2.56\end{array}$	90.57±0.68 8 85.34±1.01 8 86.32±0.45 8 86.26±0.61 85 85.30±0.70 8 86.00±1.04 81 87.99±1.65 8 93.71±0.47 92 81.03±3.58 71	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80 21 32 30 86 32 48							
dna-2	InvCal alter-xSVM conv-xSVM MeanMap InvCal	92.08 ± 1.04 89.65 ± 4.05 95.63 ± 0.45 94.06 ± 0.86 97.08 ± 0.48 97.53 ± 1.33	93.12±1.37 95.05±0.75 90.68±1.18 96.82±0.38 98.33±0.13	87.30±1.35 89.19±1.17 8. 94.25±0.50 87.64±0.76 8 96.50±0.43 99 98.38±0.23 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 89 90 79 222 27 27		\rightarrow		F	lorizontal:	bag size	
satimage-2	alter-∝SVM conv-∝SVM	98.83±0.36 96.55±0.13	98.69±0.37 96.45±0.19	98.62±0.27 98 96.45±0.39 9	Dataset	Method	2	4	8	16	32	64	
						MeanMap	85.97 ± 0.72	85.88 ± 0.34	$85.34{\pm}1.01$	83.36 ± 2.04	83.12 ± 1.52	$80.58 {\pm} 5.41$	
					australian	InvCal	86.06 \pm 0.30	$86.11 {\pm} 0.26$	$86.32{\pm}0.45$	84.13 ± 1.62	82.73 ± 1.70	$81.87 {\pm} 3.29$	
					australiali	alter- \propto SVM	85.74 ± 0.22	$85.71 {\pm} 0.21$	86.26 ± 0.61	$85.65{\pm}0.43$	83.63 ± 1.83	$83.62{\pm}2.21$	
						$ \text{conv-} \propto \text{SVM}$	85.97 ± 0.53	$86.46{\pm}0.23$	$85.30{\pm}0.70$	$84.18 {\pm} 0.53$	$83.69{\pm}0.78$	$82.98{\pm}1.32$	
						MeanMap	91.53 ± 0.25	90.58 ± 0.34	86.00 ± 1.04	80.77 ± 3.69	77.35 ± 3.59	$68.47 {\pm} 4.30$	
					due 1	InvCal	89.32 ± 3.39	$92.73 {\pm} 0.53$	87.99 ± 1.65	81.05 ± 3.14	74.77 ± 2.95	$67.75 {\pm} 3.86$	
	(una-1	$\ $ alter- \propto SVM	$95.67{\pm}0.40$	$94.65{\pm}0.52$	93.71±0.47	$92.52{\pm}0.63$	$91.85{\pm}1.42$	$\textbf{90.64}{\pm}\textbf{1.32}$			
						$conv-\infty SVM$	$93.36 {\pm} 0.53$	86.75 ± 2.56	81.03 ± 3.58	$75.90{\pm}4.56$	76.92 ± 5.91	$77.94{\pm}2.48$	

- $\bullet\,$ Our methods outperform MeanMap and InvCal.
- The gains from \propto SVM are typically even more significant when the bag size is large.

-- on the dna-1 dataset, with RBF kernel and bag size 64, alter- \propto SVM outperforms the former works by 22%.

• Also shown in the paper: less sensentive to bag proportion variations.

Conclusion

- \propto SVM
- Two optimization algorithms
- State-of-the-art result

Future works/ Open issues

- Robustness to proportion noise.
- Bag generation, bags with overlappings.
- \propto SVM for semi-supervised learning, and learning with label errors.

