
Circulant Binary Embedding (CBE)

Felix X. Yu Columbia University
Sanjiv Kumar Google Research
Yunchao Gong Facebook AI Research
Shih-Fu Chang Columbia University

ICML, Beijing, June 24, 2014



Binary Embedding

I Transform the input data into binary code

I Given x ∈ Rd , h(x) ∈ {1,−1}k

Why binary embedding?

I Learning and retrieval can happen in the binary space

I Save storage and running time

I Widely used to speedup retrieval and classification
[LSMK11, RL09]

Method
h(x) = sign(Rx), R ∈ Rk×d

I Randomized R: LSH [Cha02]

I Optimized R: reconstruction error [KD09], quantization
error[GLGP13], pairwise similarity [WKC10] etc.



Binary Embedding (cont’d)

Difficulties for High-dimensional data

I High-dimensional data requires long code to accurately
preserve the discriminative power [LSMK11] [GKRL13] [SP11]

k ∼ Θ(d)

I Computing the full projection Rx, R ∈ RΘ(d)×d , has
computational complexity and space complexity O(d2)

I d ∼ 1 Million: TBs of memory!

How to efficiently perform binary embedding
for high-dimensional data?



Binary Embedding (cont’d)

Method Time Space Time (Learning)
Full projection O(d2) O(d2) O(nd3)
Bilinear projection O(d1.5) O(d) O(nd1.5)
CBE O(d log d) O(d) O(nd log d)

Related Work: Bilinear projection [GKRL13]

I Reshape x ∈ Rd into a matrix Z ∈ R
√
d×
√
d

I Apply a bilinear projection to get the binary code

h(x) = sign(RT
1 ZR2)

Our Approach: Circulant Binary Embedding (CBE)

I Much better retrieval performance for fixed coding time by
allowing generating more bits

I Much faster computation with no performance degradation
for fixed number of bits
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Circulant Binary Embedding (CBE)

h(x) = sign(RDx), R ∈ Rd×d

I R is a circulant matrix

I R is defined by a vector r = (r0, r1, · · · , rd−1)T

R = circ(r) :=


r0 rd−1 . . . r2 r1
r1 r0 rd−1 r2
... r1 r0

. . .
...

rd−2
. . .

. . . rd−1

rd−1 rd−2 . . . r1 r0


I D is a diagonal matrix, each entry ±1 with probability 1/2

(random sign flipping, dropped to simplify notation)

I k-bit (k < d) code: first k elements of h(x)



Circulant Binary Embedding (CBE)

h(x) = sign(Rx), R = circ(r)

Why CBE?



FFT-based Computation

h(x) = sign(Rx), R = circ(r)

1. Circulant projection is identical to circular convolution

Rx = circ(r)x = r ~ x

2. Circular convolution can be computed with FFT

r ~ x = F−1(F(r) ◦ F(x))

3. Time complexity O(d log d). Space complexity O(d)
Related: Johnson-Lindenstruss results with circulant and other
structured matrices [AC06] [Vyb11]



Circulant Binary Embedding (CBE)

How to choose R?

I Randomized CBE (CBE-rand)

I Learning data-dependent CBE (CBE-opt)



Randomized CBE

h(x) = sign(Rx), R = circ(r)

Each element of r is generated i.i.d. from N (0, 1)

Distance Perserving Properties

For any x1, x2 ∈ Rd , let θ be the angle between x1, x2

I P (hi (x1) 6= hi (x2)) = θ/π
I E

(
1
k hamming(h1...k(x1), h1...k(x2))

)
= θ/π

I Var
(

1
k hamming(h1...k(x1), h1...k(x2))

)
= ?
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Learning Data-dependent CBE

I Consider learning d-bits code first

I X ∈ Rn×d : X = [x0, · · · , xn−1]T

I B ∈ {−1, 1}n×d : the binary code matrix

argmin
B,r

||B− XRT ||2F︸ ︷︷ ︸
Binary distortion

+λ ||RRT − I||2F︸ ︷︷ ︸
Non-redundancy

in the bits

s.t. R = circ(r)

I A challenging combinatorial optimization problem



Time-Frequency Alternating Minimization

Optimize B with fixed r, in original “time” domain

argmin
B

||B− XRT ||2F , B = sign(XRT )

Optimize r with fixed B

argmin
r

||B− XRT ||2F + λ||RRT − I||2F

s.t. R = circ(r)

I Can be solved efficiently in the frequency domain



Time-Frequency Alternating Minimization (cont’d)

I We optimize r̃ := F(r)

I Key tool: Parseval’s theorem (DFT preserves distance)

argmin
r̃

<(r̃)TM<(r̃) + =(r̃)TM=(r̃) + <(r̃)Th + =(r̃)Tg

+ λd ||<(r̃)2 + =(r̃)2 − 1||22
s.t. =(r̃0) = 0

<(r̃i ) = <(r̃d−i ), i = 1, · · · , bd/2c
=(r̃i ) = −=(r̃d−i ), i = 1, · · · , bd/2c

I Non-convex. Can be decomposed into d independent small
optimization problems (4th order polynomials with only 2
variables!)



Time-Frequency Alternating Minimization (cont’d)

Remarks on the algorithm

I The objective guaranteed to be non-increasing

I Good solution with just 5-10 iterations

I Running time O(nd log d)

I O(d) storage and parallel nature, suitable for GPU

I Not sensitive to λ

Learning k < d bits

I A simple approach: setting the last (d − k) bits to zero



Computational Time

Computational time based on a fixed hardware

d Full projection Bilinear projection CBE

215 5.44× 102 2.85 1.11

217 - 1.91× 101 4.23

220 (1M) - 3.76× 102 3.77× 101

227 (100M) - 2.68× 105 8.15× 103

I Dramatic speedup for high-dim data

I Moderate speedup for low-dim data (FFT overhead)



Large-Scale Nearest-Neighbor Search

Methods

I CBE (CBE-rand, CBE-opt)

I LSH

I Bilinear code (Bilinear-rand, Bilinear-opt)

Experimental Setting

I 100k images, 25,600 dimensional feature

I Use an image as query to retrieve NN. Repeat 500 times

I Ground-truth: 10 nearest neighbors based on `2 distance



Large-Scale Nearest-Neighbor Search (cont’d)

Recall (fixed coding time):
Much higher recall than LSH and bilinear code
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(a) # bits (CBE) = 6,400
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(b) # bits (CBE) = 25,600



Large-Scale Nearest-Neighbor Search (cont’d)

Recall (fixed number of bits):
Comparable or even better performance with faster computation
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(c) # bits (all) = 6,400
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Large-Scale Classification

Learning on binary code:

I Advantage: save storage

I ImageNet data: 1k categories, 100 images per category for
training, 50 for validation and 50 for testing

I d = k = 25, 600 (32 times more space efficient)

Multiclass classification accuracy (%)

Original LSH Bilinear-opt CBE-opt

25.59±0.33 23.49±0.24 24.02±0.35 24.55 ±0.30

I CBE: faster computation, no performance degradation



Conclusion and More

Conclusion

I An O(d log d) method for high-dimensional binary embedding

I Much better retrieval performance for fixed coding time

I Much faster computation for fixed number of bits

I CBE can be applied to data with ∼100M dimensions!

More

I CBE can be easily extended to semi-supervised case

I Implementation of CBE and baselines available at
https://github.com/felixyu/cbe

https://github.com/felixyu/cbe


The Requirement of D

h(x) = sign(Rx), R = circ(r)

Two Types of Distance Distortions

1. Distortion from the circulant projection

I Johnson-Lindenstruss type results with structured matrices
[Vyb11]

I The random sign flipping is required

I If x is an all-1 vector, all the bits will be the same, and close
to 0

2. Distortion from sign(·)
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