

Designing Category-Level Attributes for Discriminative Visual Recognition Felix X. Yu⁺ Liangliang Cao^{*} Rogerio S. Feris^{*} John R. Smith^{*} Shih-Fu Chang⁺ *Columbia University *IBM T.J. Watson Research Center

1. Attributes in Computer Vision

"Attribute" often refers to human nameable properties (e.g., furry, striped, black) that are shared across categories.

	 nocturnal live in trees have large eyes have long middle fingers
--	---

- not nocturnal
- do not live in trees
- (Maybe) large eyes
- no long middle fingers

Application 1: Describing images/ semantic mid-level features Application 2: Zero-shot Learning

Which of these images shows an aye-aye?

Define novel categories in terms of the existing attributes (by user or animal specialist): Aye-ayes are • nocturnal • live in trees • have large eyes • have long middle fingers

More Applications: Image Retrieval, face verification, action recognition, rate event detection... *Picture credit: C. Lampert

The "Classic" steps for attribute-based recognition:

- Manually picking (designing) a set of words as attributes.
- Label those attributes on some images.
- Train the attribute classifiers.

The Problems:

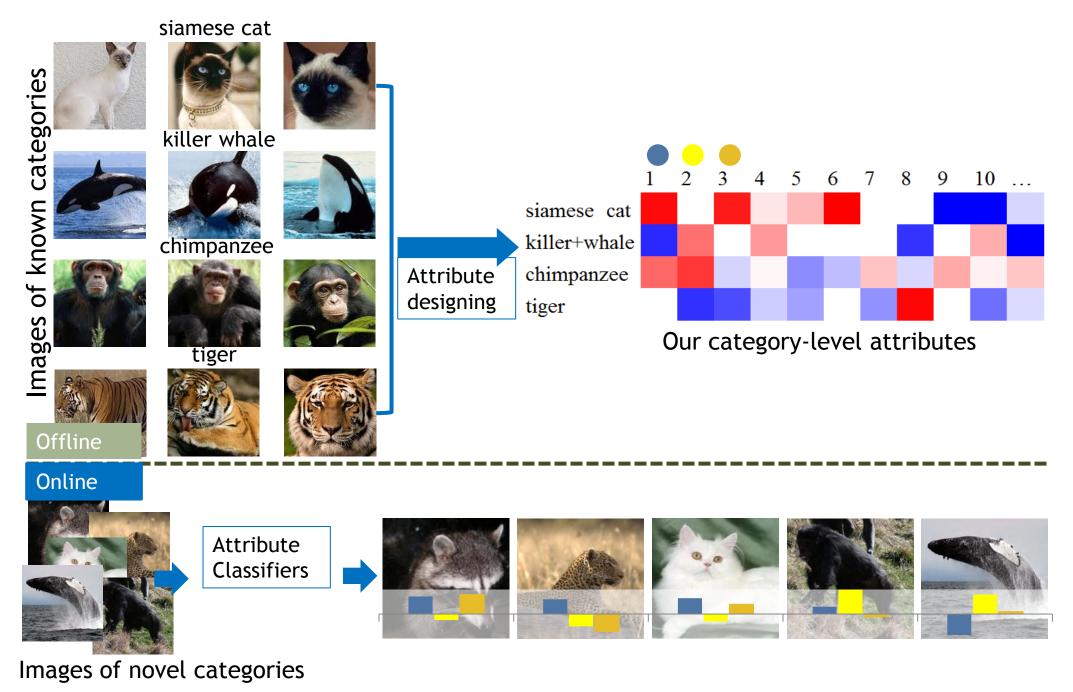
- Expensive!
- The manually designed attributes may not be discriminative.

2. Summary of Our Approach

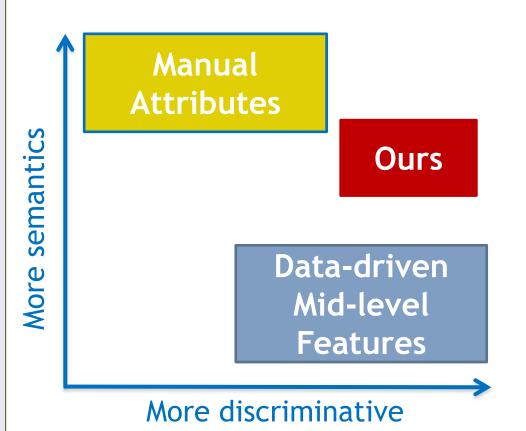
In this paper, we propose a scalable approach of automatically designing attributes for **discriminative** visual recognition.

Summary of the Idea:

- Define attributes as associations with a set of known categories (a category-attribute matrix), e.g., dogs and cats have it but sharks and whales don't.
- Optimize the category-attribute matrix to make the representation discriminative.



3. Related Works



- [©] Fully automatic, with a multi-class dataset
- **Discriminative**
- State-of-the art results in novel category recognition including zeroshot learning, and learning with few examples.
- ⊗ No clear semantic meanings (but they can be described in terms of known categories).

4. A Learning Framework for Visual Recognition with Category-Level Attributes

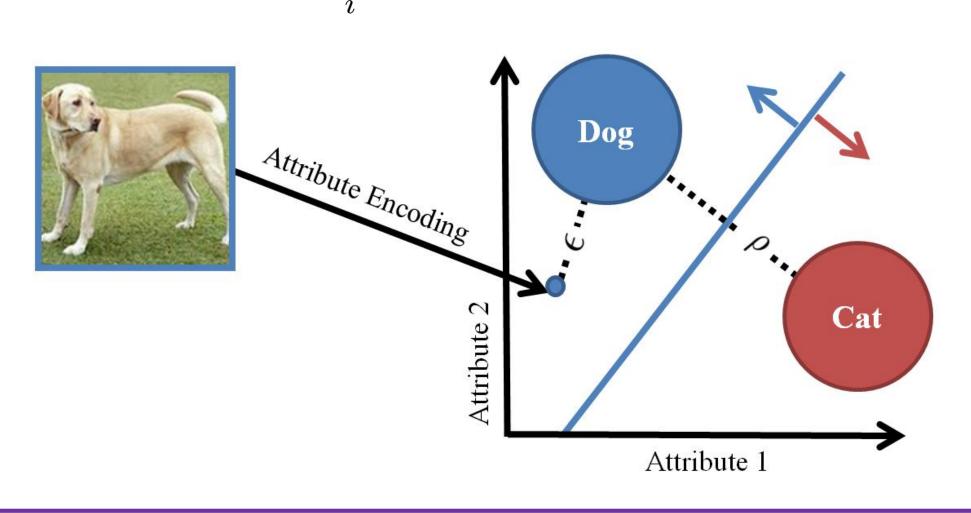
• The category-attribute matrix is denoted as $\mathbf{A} \in \mathbb{R}^{k \times l}$ (k categories, and l attributes).

Definition 1. For an input image $\mathbf{x} \in \mathcal{X}$ (as low-level features), we define the following two steps to utilize attributes as mid-level cues to predict its category label $y \in \mathcal{Y}$.

Attribute Encoding: Compute l attributes by attribute classifiers $\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), ..., f_l(\mathbf{x})]^T$ in which $f_i(\mathbf{x}) \in \mathbb{R}$ models the strength of the *i*-th attribute for \mathbf{x} .

Category Decoding: Choose the closest category (row of A) in the attribute space (column space of \mathbf{A}):

$\arg\min \| \mathbf{A}_{i\cdot} - \mathbf{f}(\mathbf{x})^T \|$.



Definition 2. Define ϵ as the average encoding error of the attribute classifiers $\mathbf{f}(\cdot)$, with respect to the category-attribute matrix \mathbf{A} .

$$\epsilon = \frac{1}{m} \sum_{i=1}^{m} \| \mathbf{A}_{y_i} - \mathbf{f}(\mathbf{x}_i) \|.$$

Definition 3. Define ρ as the minimum row separation of the category-attribute matrix \mathbf{A}

$$\rho = \min_{i \neq j} \| \mathbf{A}_{i \cdot} - \mathbf{A}_{j \cdot} \|.$$

Theorem 1. The empirical error of multi-class classification is upper bounded by $2\epsilon/\rho$.

Characters of good attributes:

- Category-separability: Large ρ .
- Learnability: Small ϵ . This also implies that attributes should be shared across "similar" categories.
- Non-redundancy: $r = \frac{1}{l} \parallel \mathbf{A}^T \mathbf{A} \mathbf{I} \parallel_F^2$.

5. The Attribute Designing Algorithm

5.1 Learning the Category-attribute Matrix

$$\max_{\mathbf{A}} J(\mathbf{A}) = J_1(\mathbf{A}) + \lambda J_2(\mathbf{A}) + \beta J_3(\mathbf{A})$$

•
$$J_1(\mathbf{A}) = \sum_{i,j} \| \mathbf{A}_{i\cdot} - \mathbf{A}_{j\cdot} \|_2^2$$

• $J_2(\mathbf{A}) = -\sum_{i,j} S_{ij} \| \mathbf{A}_{i\cdot} - \mathbf{A}_{j\cdot} \|_2^2$

•
$$J_3(\mathbf{A}) = - \| \mathbf{A}^T \mathbf{A} - \mathbf{I} \|_F^2$$

The visual proximity matrix: $\mathbf{S} \in \mathbb{R}^{k \times k}$: $S_{ij} = e^{-D_{ij}/\sigma}$. • When nonlinear kernels are used, SVM margins, of k(k-1)/2 one-vs-one SVMs modeled on low-level features are used as distance measurement for categories.

• When linear kernels are used we use the distances of category centers (category mean of the low-level features) as distance measurements (complexity linear to # images).

We propose to incrementally learn the columns of **A**. Given an initialized \mathbf{A} , optimizing an additional column \mathbf{a} :

max $\mathbf{a}^T \mathbf{R} \mathbf{a}$ s.t. $\mathbf{a}^T \mathbf{a} = 1$,

in which $\mathbf{R} = \mathbf{Q} - \eta \mathbf{A} \mathbf{A}^T$, $\mathbf{Q} = \mathbf{P} - \lambda \mathbf{L}$, **P** is with diagonal elements being k-1 and all the other elements -1, and L is the Laplacian of S, $\eta = 2\beta$. This is a Rayleigh quotient problem, with the optimal \mathbf{a} as the eigenvector of \mathbf{R} with the largest eigenvalue.

5.2 Learning the Attribute Classifiers: Weighted SVM

$\min_{\mathbf{w}_i,\xi}$	$\ \mathbf{w}_i \ _2^2 + C \sum_{j=1}^m A_{y_j,i} \xi_j$
s.t.	$\operatorname{sign}(A_{y_j,i})\mathbf{w}_i^T\mathbf{x}_j \ge 1 - \xi_j$
	$\xi_j \ge 0, j = 1m$

5.3 Efficiency

The computational complexity of designing an attribute (a column of \mathbf{A}) is as efficient as finding the eigenvector with the largest eigenvalue of matrix \mathbf{R} : 1 hour to design 2,000 attributes based on 950 categories on the large-scale ILSVRC2010 dataset.

6. Experiments

Datasets: AwA (30k images, 50 categories) and ILSVRC2010 (1M images, 1k categories)

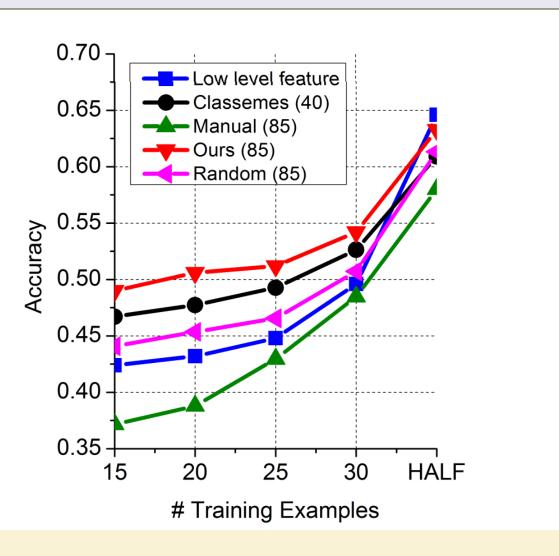
6.0 Verifying the Attribute Designing Criterion (AwA)

Measurement	Designed	Manual	Random
Encoding error ϵ	0.03	0.07	0.04
Minimum row separation ρ	1.37	0.57	1.15
Average row separation	1.42	1.16	1.41
Redundancy r	0.55	2.93	0.73

(# Attributes: 85)

6.1 The designed attributes are discriminative for novel, yet related categories.

AwA: Use 40 categories to design the attributes. Then use attributes as feature for recognizing the remaining 10 categories, with different # training images.



6.2 The designed attributes are discriminative for general novel categories (ILSVRC2010), if we can design a large amount of attributes based on a diverse set of known categories. We train attributes based on 950 categories.

Method	Precision@50			Percen	tage for t	raining
Low-level feature	33.40	Method	1%	5%	10%	50%
Classeme (950)	39.24	Low-level feature	35.55	52.21	57.11	66.21
Ours (500)	39.85	Classemes (950)	38.54	51.49	56.18	64.31
		Ours (500)	39.01	52.86	56.54	62.38
Ours (950)	42.16	Ours (950)	41.60	55.32	59.09	65.15
Ours (2,000)	43.10	Ours (2,000)	43.39	56.51	60.36	66.91
Category-level image	e retrieval result	Image classificati	on accui	racy on !	50 classe	es. The

on 50 classes

on 50 classes. The training set contains 54,636 images

10% 50% 100%

57.11 66.21 **69.16**

56.18 64.31 66.77

56.54 62.38 63.86

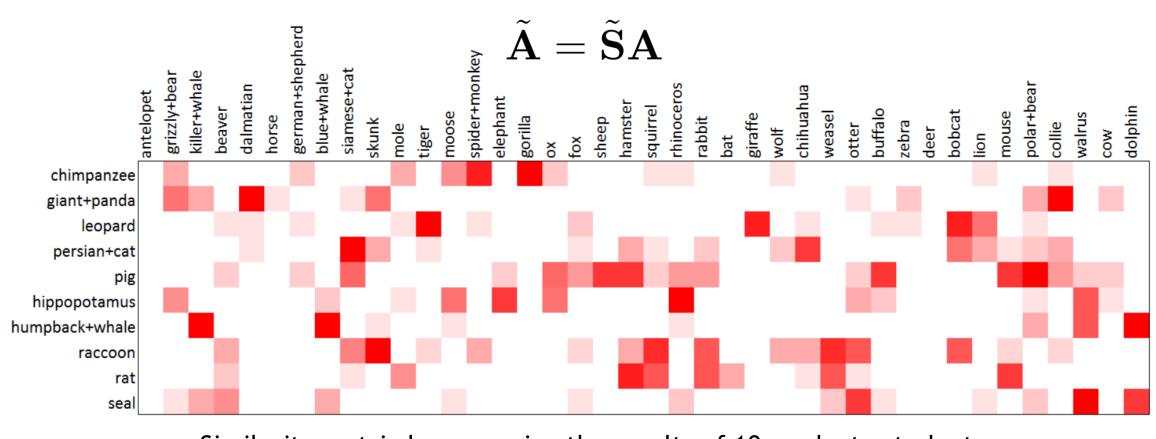
59.09 65.15 66.74

60.36 66.91 68.17

6.3 The attributes are effective for zero-shot learning

Given each novel category, and 40 known categories, we ask the user to find the top-5 visually similar categories: $\mathbf{S} \in$ $\{0,1\}^{p\times k}$, in which S_{ij} is the binary similarity of the *i*-th novel category and the *j*-th known category.

The novel categories are related to the designed attributes by the simple weighted sum:



Similarity matrix by averaging the results of 10 graduate students

We can then follow the proposed framework to do zero-shot learning:

Method	# Attributes	Accuracy
Lampert et al. [13]	85	40.5
Yu and Aloimonos [35]	85	40.0
Rohrbach et al. [23]	-	35.7
Kankuekul et al. [11]	-	32.7
Ours	10	40.52 ± 4.58
Ours	85	42.27 ± 3.02
Ours	200	42.83 ± 2.92
Ours (Fusion)	200	46.94
Ours (Adaptive)	200	45.16 ± 2.75
Ours (Fusion + Adaptive)	200	48.30

Zero-shot learning result on AwA (40 categories for training, 10 categories for testing)

Adaptive Attribute Design: $J_1(\mathbf{A}) = J_1(\mathbf{S}\mathbf{A})$.

